Design of a Sewage Treatment Plant at Bearys Institute of Technology, Mangalore

Shobhan Majumder^{1*}, Poornesh², Reethupoorna M.B.², Razi Musthafa²

¹(Assistant professor, Dept. of Civil Engineering, B.I.T, Mangalore, India) ²(Research scholar, Dept. of Civil Engineering, B.I.T, Mangalore, India) Corresponding Author: Shobhan Majumder

Abstract: Wastewater generated in school and colleges have to take care as it may pollute the ground water if not treated properly. This paper focuses on the design of a STP unit in Bearys Institute of Technology (BIT), Mangalore for the treatment of boy's hostel wastewater of 160 students with 135 LPCD. Physical and chemical characteristics of the wastewater samples showed a low strength in pollutant concentrations. Treatment units were planned and designed based on the existing condition. Equalization tank was designed for flow balancing; however, flash mixer was designed to mix coagulants. Suspended particles can be removed with clariflocculator and generated floc can be sent to the sludge drying bed. Colloidal and finer particles can be removed in rapid gravity filter and disinfection unit was designed for destroying the pathogens and ensuring safe disposal of treated wastewater.

Keywords: Characteristics, Design, Dimension, Sewage, STP

Date of Submission: 29-04-2019

Date of acceptance: 13-05-2019

I. Introduction

Sewage disposal in natural waters is a common practice among many nations. Large inputs of organic matter and nutrients from raw sewage to a weak hydrodynamic environment poses environmental and health problems from deterioration of water quality [1,2]. Shivaranjani and Thomas (2017) have presented the performance study for treatment of institutional wastewater by activated sludge process. The maximum BOD removal efficiency obtained was 93.7% and turbidity removal efficiency was 87.6% in the 8 hrs HRT [3]. Dhote et al. (2012) have undertaken a study of review on wastewater treatment technologies with chemical coagulation, adsorption and activated sludge to remove pollutants from wastewater [4]. Roy et al. (2016) have conducted studies on analysis and design of an institutional wastewater management scheme. They have pointed the recycling and recovering of wastewater with Sequencing Batch Reactor (SBR) [5]. Lognathan et al. (2012) have reported a batch mode SBR to treat domestic wastewater and the results showed that effective influent parameters were removed within 6 hr cycle time where an aeration rate was 6 L/min [6].

Fig. 1. Methodology adopted for the treatment of BIT boys hostel wastewater.

Methodology was developed based on the quantity and characteristics of wastewater generated in BIT boys' hostel. The treatment units were selected based on the functions and economy. Flow equalization tank was considered for balancing the generated wastewater. However, Flash mixer, Clariflocculator, and rapid gravity filters were taken into consideration for the removal of suspended and colloidal particles. Finally, disinfection unit was installed for killing the pathogens. The sludge generated in clariflocculator was sent to sludge drying bed.

III. Results and Discussion

3.1 Characteristics of collected wastewater sample

The collected wastewater (w/w) was characterized for physical and chemical parameters. Table 1 represents the characteristics of the collected sample. The pH of the wastewater sample was varying from 7.4 ± 0.7 . However, BOD of the wastewater sample was observed varying from 55 ± 20 mg/l. On the other hand, COD of the wastewater sample was varying from 290 ± 60 mg/l. It was observed that BOD and COD were above the discharge standard as per IS-2012. Based on the characteristics of the sample it was concluded the wastewater was having low strength pollutant concentration.

Table 1: Physical and chemical characteristics of collected wastewater sample in BIT campus

Sl No.	Parameter	Unit	Concentration of wastewater sample	Discharge Standard (IS-2012)
Physical				
1	Temperature	°C	20 ± 40	> 5
2	Turbidity	NTU	2 ± 1	
3	Color	Hazens	Colorless	
Chemical	l			
4	pН		7.4 ± 0.7	5.5 - 9
5	Conductivity	µs/cm	190 ± 15	
6	TDS	mg/l	380 ± 40	
7	TSS	mg/l	130 ± 12	100
8	DO	mg/l	6.5 ± 2	> 4
9	BOD	mg/l	55 ± 20	30
10	COD	mg/l	290 ± 60	250
11	Chloride	mg/l	250 ± 20	
12	Sulfate (SO ₄ ⁻²)	mg/l	95 ± 7	
13	Nitrate (NO_3)	mg/l	12 ± 2.2	10
14	Phosphate (PO ₄)	mg/l	0.2 ± 0.14	5

3.2 Calculation of wastewater generated INPUT

No. of water tenks		2	nos
Fach tank consists		5000	litore
Each tank capacity		5000	inters
No. of times of filling		3	times
Population		160	Popln
Per capita demand		135	LPCD
CALCULATION			
Flow rate	Popln x LPCD	21600	L/d
	-	21.6	m ³ /d
Quantity of water supplied		21.6	m ³ /d
Quantity of wastewater generated	80% of water supply		
Quantity of wastewater generated	80% of water supply	17.28	m ³ /d
Assume peak factor		1.3	times
Total quantity of ww generated	WW generated x 1.3	22.46	m ³ /d
DECI I T			
Ouantity of wastewater generated		22.46	m ³ /d
		22464	1/d
		0.022	MLD
		25	m ³ /d
Consider future expansion and peak dem	and	2	times
- •		~ 50	m ³ /d

3.3 Design of Equalization tank

Fig. 2. Variation of BOD concentration, BOD loading, average flowrate, average outflow, cumulative volume of wastewater with time

Wastewater generated from BIT hostel was collected for 24 hrs. The concentration of the wastewater in terms of BOD was measured. The variation of average BOD concentration (mg/l) and BOD loading (kg/hr) was represented in Figure 2. However, a constant outflow was calculated as 0.816 m³/hr. The cumulative maximum wastewater was calculated to design the maximum volume of equalization tank.

Fig. 3. Plan and Cross-section of designed Equalization Tank (dimensions in m, not up to the scale)

3.4 Design of Flash Mixer DESIGN CRITERIA

DESIGN CRITERIA			
H : B	2	:1	
Tangential velocity of impeller at tip	3	m/s	
Impeller speed	100-130	rpm	
Detention time	20-60	sec	
For Dt, 10-60s, G	600-1000	1/sec	
Dia of impeller to width	0.3-0.6	times	
Distance of impeller blade from bottom to depth	0.5-0.33	times	
of tank			
Liquid depth to tank dia/width	0.5-1.1	times	
ASSUMPTIONS			
Final alum conc	80	% of initial al	um conc
G	700	1/sec	
Detention time (Dt)	90	sec	
water temp	18	°C	
Impeller efficiency	80%		
CALCULATION			
Given Q	50	m ³ /d	
	0.000578704	m^3/s	
Dynamic viscosity u @ 18° C		1063	kg/ms
_)		0.001063	Pa.sec
Vol of tank	flow x Dt	0.052	m ³
Provide JTO1500 model double blade impeller wit	h 130 rpm		
	n	2.17	
power		0.08	kW
power factor		1.8	
With 80% efficiency, final water power		0.064	kW
Calculation		64	W
$G = \sqrt{(P/\mu V)}$			
Volume capacity	$V = (P/G^2u)$	0.12	m^3
No of tanks		0.424	
	Sav	1	nos
Tank dimensions $=$ square type	H:W	2	:1
Vol L*W*H	2x*x*x	0.052	m ³
Width of tank	x=B	0.296	m
Length of tank	L	0.296	m
Depth of tank	H	0.593	m
Dia of impeller Di		0.070	
$Di = (P/(Kt*n^{3}*o))^{(1/5)}$	Di	0.263	m
Where, Kt=6.3, ρ =1000		0.205	

Pipe of	diameter					
Assu	me, Slope (S)			1 in	50	0 0.002
Assu	me, C value for Cement Concrete				14	-0
Apply	y Hazen Willium Eqn					
V=0.3	85 C*R^(0.63) * S^(0.54)	,	V = (Q/A))	$A=\pi d^2/$	4 R=d/4
Dia o	f pipe					
d= ((4	$4^{1.63*Q}/(\pi^{*0.85*C*S^{0.54}})^{(1/2.54)}$	63)			0.001	1 m
					1.118	88 mm
				Say	1	0 cm
					0.0	05 m
Impel	ller shaft length		(2/3)*H		0.39	95 m
Conc	rete casting wall				0.1	3 m
Moto	r					
Powe	r requirement			0.08	kW	
1HP				0.746	kW	
Requ	ired HP = Power required / 0.746 kW	r		0.11	HP	
Say				1	HP	
or						
Requ	ired			5	$HP/4.5 m^{3}$	
Volu	me			0.052	m3	
Requ	ired HP = 5 HP*Vol/4.5 m ³			0.06	HP	
-		Say		1	HP	
Resu	lt	-				
Flow	rate			Q	5	50 m ³ /d
Vol o	f tank			Vol	0.05	$52 m^3$
Widt	h of tank			В	0.3	60 m
Leng	th of tank			L	0.3	60 m
Dept	h of tank			Н	0.5	59 m
Deter	ntion time			Dt	9	0 sec
Inlet	and Outlet Pipe diameter			d	0.1	0 m
	0.1 0.2			·		~ 두 0.1
	0.3					
				Č.	Ø=0.1	6-
		0 1				
		+ 0.1				
						0.6
Ø=0.1		Ø-0 1		-		-
2 0.1		Ø=0.1				
						÷
(7=0 10		
		1000			-	4
	•	0.3		<u> </u>		
	M .			<u> </u>		분 ± 0,1
		<u> </u>		H	03	
	Plan	<u> </u>		H	0.3 Cross-section	+ 0.1

Fig. 4. Plan and Cross-section of designed Flash Mixer (dimensions in m, not up to the scale)

3.5 Design of Clariflocculator

Design Criteria for Flocculator		
Depth of tank	2.5 to 5	m
Detention time (Dt)	10 to 40	min
Inlet velocity (v)	0.2 to 0.8	m/s
Velocity Gradient (G)	10 to 75	1/s
Total area of paddle	10 to 25% C/s	
RPM of the shaft	1 to 2	
Power Consumption	10 to 36	W/MLD
-		

Peripheral velocity of blades Outlet velocity to settling tank Dimensionless factor (Gt)		0.2 to 0.6 0.3 10^4 to 10^5	m/s m/s	
Design criteria for Clarifier and sludge he Depth of the tank Detention time Weir overflow rate Dia of tank Length of rectangular tank Bottom slope Power Scrapper Velocity Tip velocity of scrapper Sludge removal pipe dia Slope of sludge hopper	opper	$\begin{array}{c} 2.5 \text{ to } 5 \\ 1.5 \text{ to } 4 \\ 150 \text{ to } 300 \\ 30 \text{ to } 60 \\ 30 \text{ to } 100 \\ 1\% \\ 8\% \\ 0.75 \\ 0.07 \\ 0.3 \\ 0.1 \text{ to } 0.2 \\ 1.2 \end{array}$	m hr m ³ /d/m m for rectangular for circular W/m ² rpm m/min m :1	
Given Data:		50	³ /d	
Detention time in flocculator Inlet Velocity Depth of flocculator (Hf) Area of paddles		$\begin{array}{c} 30\\ 0.05\\ 2.083\\ 0.035\\ 0.00058\\ 40\\ 2400\\ 2400\\ 0.25\\ 2\\ 20\% \end{array}$	m /d MLD m ³ /hour m ³ /sec min sec sec sec m/s m of area of flocc	ulator
No of paddles Clearance between paddle and flocculator		2		ulutor
wall Tip velocity Depth of clarifier (Hc) Surface overflow rate Detention time in Clarifier		0.1 0.2 3 15 2	m m/s m ³ /day/m ² hrs	
CALCULATION Volume required Inlet pipe velocity Flow Area of inlet pipe (A1)	Q * Dt v Q Q/v		1.389 0.25 0.00058 0.0023	m ³ m/s m ³ /sec m ²
Diameter of inlet pipe (d1) Depth of flocculator Volume of flocculator Area of flocculator (A2) Total area of Flocculator	sqrt(4*SA/ π) Vol/depth (A2+A1)		0.054 2 1.389 0.694 0.697	$egin{array}{c} m \ m \ m^3 \ m^2 \ m^2 \end{array}$
Diameter of Flocculator (d2)	sqrt(4*SA/ π)		0.94	m
Area of paddles No of paddles Area of 1 paddle	20%*Df*depth		0.38 2 0.19	m ² m ²
Dimension of paddles	L=B= sqrt(SA)		0.43	m
Tip velocity	ם		0.43	m/s

Relative velocity Radius of paddle revolution Rotation per minute of shaft	0.75* tip velocity (d2/2)-(d1-2)-clear distance tip velocity/perimeter	0.15 0.34 0.093	m/s m rps
	Can be controlle	o.o d within 1 rpm	rpm
Calculation of Power (P)		1	
Assume, Cd		1.8	lra/m^3
Density of water		1000	$\frac{\text{kg}}{\text{m}^2}$
A = area of paddleVt = Relative velocity		0.15	m/s
Power (P)	0.5*Cd*p*A*Vt^3	1.14	W
Assume, μ = Dynamic viscosity	·	0.001008	
Velocity gradient	(P/µVol)^0.5	28.6	1/s
		b/w 10 to 75	1/s
Gt	$G^{*}DI$ Should be $h/w = 10^{4}$ to 10^{5}	68569	
Power consumption	P/O	22.86	W/MLD
	Should be b/w 10 to 36 W/ML	.D	
Surface overflow rate		15	m ³ /day/m ²
Flow Rate		50	m^3/d
Area of Clarifier	Flow rate/SOR	3.33	m_2^2
Total area (A1+A2+A3)	aart(A*SA/-)	4.0301	m
Total Diameter of Clariner	$sqrt(4 \cdot SA/\pi)$	2.27	III
Detention time in Clarifier		2	hrs
Flow rate		2.083	m ³ /hr
Surface overflow rate		15	m ³ /day/m ²
Depth of clarifier	Q*Dt/SOR	0.278	m
		0.025	m ³ /min
Flow rate Outflow to clarifier		0.035	m/min
		0.5	111/11111
Area of opening below flocculator	Q/outflow	0.116	m^2
Depth of opening	area/perimeter flocculator	0.039	m
Depth of clarifier	Opening H + Hf	2.04	m
Sludge hopper height	25%	Extra Clarifier	height
		2.55	m
Assume, Diameter of sludge hopper		0.1	m
Assume, side slope		1.2	:1
Tan diamatan af alu dag bannan		0.2	
Bottom slope	adding 8%	0.2	III m
Dottom stope	adding 070	0.0020	111
Total height at center of clariflocculator		2.632	m
A service Male star in laws day		0.2	/
Assume, velocity in launder	0/2	0.3	m/s m^2
Assume depth	Q/V	2	x width
Width		0.031	m
Depth		0.062	m
Wetted perimeter	2*depth + width	0.155	m
Hydraulic mean depth Using Manning's formula	R=A/P	0.0124	m
$V = (1/N) * R^{2/3} * S^{1/2}$			
N = Manning's constant		0.012	
V = Velocity		0.3	m/s
S	(N*V*R^(3/2))^2	3.7287E-08	
		1 in	26819149

Assume inlet pipe diameter		0.15	m
RESULT			
Water flowrate	Q	50	m ³ /d
Diameter of inlet pipe	d1	0.054	m
Diameter of Flocculator	d2	0.94	m
Total Diameter of Clarifier	Dia	2.27	m
Total height at center of CF	Н	2.632	m
Dimension of paddles	Dp	0.43	m
Rotation per minute of shaft	R	5.57	rpm
Power	Р	1.14	Ŵ
Power consumption	Рс	22.86	W/MLD
Inlet and Outlet Pipe diameter	d	0.15	m

Fig. 5. Plan and Cross-section of designed Clariflocculator (dimensions in m, not up to the scale)

	Assume total depth of structure Surface area Assume L:B	Vol/Depth B	1.3 10.897 1.5 2.70	m m ³ : 1 m
	Assume depth of spreading layer per cycle Assume total depth of structure Surface area	Vol/Depth	0.3 1.3 10.897	m m m ³
	Period of each cycle Total Volume of sludge to be handled	365/total nos sludge Volume * days	11.06 3.269	days m ³
	CALCULATION Volume of sludge (sludge generated)/(1000*SG*solid content) Assume total no of cycle in 1 year		0.296 33	m ³ /d nos
5.0	Design of Sludge drying bed INPUT Flow Sludge applied For Assume specific gravity Solid content	$1 m^{3}/d$ 50 m ³ /d	50 0.09 4.5 1.015 1.50%	m³/d kg/d kg/d

www.iosrjournals.org

Fig. 6. Plan and Cross-section of designed Sludge Drying Bed (dimensions in m, not up to the scale)

3.7	Design of Rapid Gravity Filter INPUT				
	Flow			50	m ³ /d
	Rate of filtration			0.075	$m^3/m^2/h$
	No of bed			1	nos
	Flow per bed			2.083	m ³ /h
	CALCULATION				
	Area of bed	Flow/Rate of Filtration		27.78	m^2
	Assume, L:W		1.3 :1		
	Width (W)	Sqrt(SA/ratio)		4.62	m
	Length (L)			6.01	m
	Ratio L:W			1.3	
		This is to the range of 1.11	to 1.66		
	a) Sand				
	Provide depth of sand as			3	cm
	Effective size 0.5 mm			0.03	m
	Uniformity coefficient 1.5				
	d10 size			0.5	mm
	d60 size			0.75	mm
	b) Gravel				
	Depth of gravel			0.45	m
	Size of gravel at top			2 to 5	mm
	size of gravel at bottom			50	mm
	c) Depth of water				
	Depth of water above sand surface			0.03	m
	Free board			0.3	m
	Provide extra depth			0.2	m
	Total depth of filter box			1.01	m
	d) Under drain system				
	Provide 2 sections per filter bed				
	Area of filter per bed			27.78	m^2
	Under drain section			27.78	m^2

DOI: 10.9790/2402-1305012536

e) Backwashing of filters Rate of backwash Rate of air wash			9 12	lit/m ² lit/m ²
f) Inlet pipe for each filter bed Inlet flow per bed For 20% avarland (Q)		20%	50	m^{3}/day
For velocity of flow of		20%	1	m/s
Surface area	O/v		0.00069	m^2
Diameter of pipe (d)	sqrt(4*SA/3.14)		0.030	m
			29 74	mm
	Assume		15	cm
			0.15	m
g) Filter water outlet pipe per section	of filter bed			
Outlet per section			50	m ³ /day
For 20% overload (Q)		20%	60	m ³ /day
For velocity of flow of			1	m/s
Surface area	Q/v		0.00069	m^2
Diameter of pipe (d)	sqrt(4*SA/3.14)		0.030	m
			29.74	mm
	Assume		15	cm
Valafhad	I *D*II		0.15	m^{3}
voi oi bed	L*B*H		28.06	m
RESULT				
Flow	0		50	m ³ /d
No of bed	nos		1	
Flow per bed	Qnet		2.08	m ³ /h
Area of bed	A(bed)		27.8	m ²
Width	B		4.62	m
Length	L		6.01	m
Provide depth of sand as	Hs		3	cm
Depth of gravel	Hg		0.45	m
Depth of water above sand surface			0.03	m
Total depth of filter box	H		1.01	m 3
Vol of bed	Vol		28.06	m
Diameter of pipe	a		0.15	m

Fig. 7. Plan and Cross-section of designed Rapid Gravity Filter (dimensions in m, not up to the scale)

3.8 Design of Disinfection tank

INPUT			
Flow		50	m ³ /d
Assume depth		1.5	m
Assume detention time		30	min
CALCULATION		1800	sec
Therefore Volume	Flow * dt	1.042	m^3
Surface area	Q/H	0.694	m^2

www.iosrjournals.org

Assume L:W	1.5 :1		
	W	0.68	
	L	1.02	
Assume dosage of Cl ₂		5	mg/L
Quantity of Cl ₂ required	Flow * Conc	250000	mg/d
		250	gm/d
		0.25	kg/d
Provide JTQ1500 model double blad	e impeller with 130 rpm		
power		0.2	kW
	n	2.17	
Diameter of impeller Di			
$Di=(P/(Kt*n3*\rho))^{(1/5)}$	Di	0.315	m
Where, Kt=6.3, ρ =1000			
Height of the shaft	Hs	1	m
Assume pipe dia		15	cm
		0.15	m
Vol of Tank	L*B*H	1.04	m°
RESULT		-	3
Flow	Q	50	m [°] /d
Detention time	Dt	30	min
Length		1.02	m
Width	B	0.68	m
Depth	HS	1.5	m 3
Vol of tank	Vol	1.04	m
Inlet and Outlet Pipe diameter	d	0.15	m

3.9 Summary of different designed treatment units

Parameter	Unit	Eq tank	FM	CF	SDB	RGF	Dis
Flow rate (Q)	m ³ /d	50	50	50	50	50	50
Detention time (Dt)	sec	3600	90	Dtf = 2400	11 d		1800
Volume (Vol)	m ³	5	0.052	Dtc = 7200	14.17	28.06	1.04
Length (L)	m	2.24	0.30		4.04	6.01	1.02
Width (B)	m	1.49	0.30		2.70	4.62	0.68
Depth (H)	m	1.50	0.59	2.63	1.30	1.01	1.5
Pipe dia (d)	m	0.3	0.05	0.15	0.15	0.15	0.15
Additional Info				df = 0.94 dc = 2.27	Vol(s) = 3.27	Rf = 0.075	Cl ₂ = 0.25 kg/d

IV. Conclusion

The design of STP was considered for BIT hostel because a huge amount of wastewater was generating every day and the septic tank was unable to take the load. The design of the STP was considered for 160 students with 135 LPCD. Wastewater characteristics showed a lower concentration of pollutants. Hence, the designed was considered with equalization tank flowed by flash mixer, clariflocculator, rapid gravity filter with disinfection unit. Equalization tank will help to balance the flow, however, clariflocculator will help to form floc and removal of suspended particles. finer particles and colloidal particles will be removed in rapid gravity filter followed by disinfection unit to kill all pathogenic bacteria. However, planning has been done for the future expansion of the STP unit if requires. The designed STP is expected to handle 50 m³ of water in a day.

Acknowledgements

Author(s) are thankful to Karnataka State Council for Science and Technology (KSCST), IISc, Bengaluru for providing financial support in conducting the project.

References

- [1]. Rajagopalan, V. and Sewage Pollution. Central Pollution Control Board, Ministry of Environment and Forests, 2005.
- [2]. Al-Dahmi, H., Raw Sewage and Marine Pollution Information Source, National Scientific and Technical Information Center Kuwait Institute for Scientific Research, 2009.
- [3]. Shivaranjani, S.K. and Thomas, L.M., Performance study for treatment of institutional wastewater by activated sludge process, International Journal of Civil Engineering and Technology (IJCIET), 8(9), 2017, 376-382.
- [4]. Dhote, J., Ingole, S. and Chavhan, A., Review on wastewater treatment technologies, *International Journal of Engineering Research & Technology (IJERT)*, 1(5), 2012, 1-10.
- [5]. Roy, R.R., Sreekrishnan, T.R. and Alappat, B.J., Analysis and Design of an Institutional WasteWater Management Scheme, *Conference Proceeding*, 2016, 1-11.
- [6]. Lognathan, R., Biological Treatment of Domestic Wastewater Using Sequential Batch Reactor (SBR), Indian Journal of Environmental Protection, 32(7), 2012, 1-12.
- [7]. Manikandan, K., Gayathri, V., Pavithra, P., Pooja, P. and Sandhiya, B., Design of Raw Water Treatment Plant at
- [8]. Arakkonam Taluk, International Journal of Innovations in Engineering and Technology (IJIET), 6(1), 81-86.
- [9]. Doshi, V. and Shah, D., Design of Clariflocculator, Water and wastewater engineering, Lecture 5, 1-10.
- [10]. Williams, R.B. and Culp, G.L., Handbook of Public Water Systems, 2nd Edition, HDR Engineering Inc., 1986.
- [11]. Water treatment plant design, American Water Works Association American Society of Civil Engineers, McGraw-Hill handbooks, 2005.

Shobhan Majumder. "Design of a Sewage Treatment Plant at Bearys Institute of Technology, Mangalore." IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) 13.5 (2019): 25-36.